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In this paper we consider solvable model systems on which finite-time work is done. For the systems and
changes in state considered, there is no entropic change and the ensuing work distribution is Gaussian. We
focus on the fluctuations in the work for such systems, arising from system-bath interactions and finite system
recurrences, and study the resulting effect of dynamical broadening on the corresponding distribution P�e−�0W�.
This allows us to describe the dependence of P�e−�0W� on time and system-bath interactions. From the long-
time behavior of the work fluctuations and P�e−�0W�, we clarify both �i� when a stochastic treatment of the
dynamics may be legitimately invoked and �ii� how information on the system-bath interaction for stochastic,
near-equilibrium, systems may be extracted for such processes where a final temperature is well defined.
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I. INTRODUCTION

It was first shown by Jarzynski that, under certain circum-
stances, a change in free energy for a system �F induced by
applying a force over some time � may be computed by
summing over all work cumulants for a system and bath
initially equilibrated to temperature �o

−1 by a supersystem.
More explicitly the Jarzynski equality �JE� reads �1,2�

e−�F = �e−W�0 = e�n=1
� �− �n�Wn�0,c/n! �1�

where Jarzynski’s work W=W��� is W���=�0
�dt�tH where H

is the system plus bath Hamiltonian and the subscript c
above denotes cumulants. The average �¯�0 is performed
with respect to the �canonical� distribution of the system plus
bath initial conditions. For convenience, all quantities with
units of energy are rescaled by the inverse of temperature �0
throughout and Boltzmann’s constant, kB, is set to 1.

Since the derivation of Eq. �1�, experiments and simula-
tions have verified the equality and related fluctuation theo-
rems with varying success �3–8� while, from the theoretical
standpoint, some of the conditions used to derive the JE have
been relaxed and notable points have been clarified �9–24�.
Alternate fluctuation theorems have also been proposed
�25–34�.

In previous work, we studied the effect of large phase
space redistribution of the system on the convergence prop-
erties of the work cumulant expansion of Eq. �1� in the limit
of a temporally diabatic process �35�. In this treatment, the
system served as its own bath and the entropy difference �S,
between the initial and final equilibrium states was

�S=�n=2
�

�−�n�Wn�c

n! . We studied these types of processes
by mapping our problem onto the reverse process, i.e., by
using diabatic drops in potential in a region of the coordinate
phase volume to study entropic processes. The existence of
this duality between forward and reverse processes was ear-
lier pointed out by Ritort and very recently reviewed by
Jarzynski �9,36�.

Since the change in potential was diabatic, time did not
explicitly enter into our analysis. Instead, we dealt with the
expansion of the ideal gas and the Gaussian chain both of
which are exactly solvable. We were thereby able to address

the subtle issue of the thermodynamic limit on sampling of
higher-order work cumulants for the case where the free en-
ergy change is primarily entropic and for which an accurate
determination of the free energy change relies on the tails of
the work distribution.

However, the strength of Jarzynski’s formalism lies in
characterizing thermodynamic quantities for finite-time ex-
periments on systems coupled to their environment. Atten-
tion has thus been drawn to the convergence of the work
cumulant expansion in time �14,36–38�.

There is another fundamental issue regarding the inherent
time-dependence in the formulation of the JE which has re-
ceived less attention in the literature. Consider the crucial
step in the derivation of the JE which involves disconnecting
a finite number of canonically distributed degrees of free-
dom, labeled as system plus bath at initial temperature �o

−1,
and allowing these to evolve under the action of a force from
time 0 to �. The question arises whether the final system plus
bath Boltzmann weights, used in computing free energy dif-
ferences according to Eq. �1�, can be related to the true Bolt-
zmann weights in the absence of disconnection from the mi-
crocanonical supersystem �2,39,40�. In general, this is not
true because the temperature of a supersystem �and thus the
temperature of any finite number of degree of freedom con-
tained within the microcanonical ensemble� changes for an
arbitrary variation in the total energy content.

In a related context, previous work by I. Oppenheim has
demonstrated how the temperature of a microcanonical su-
persystem is renormalized by the application of an external
force using nonlinear response theory �41,42�. This was
shown for the case of an adiabatic change by an expansion in
N−1, where N is the number of degrees of freedom contained
in the microcanonical supersystem.

For the case when the applied force only recenters the
energy distribution of the system, the above difficulties do
not arise. The same holds for a system with strongly dissipa-
tive dynamics where the system is near equilibrium at every
step and the temperature is instead defined through a
fluctuation-dissipation theorem �43�.

In this paper, we consider model systems with Gaussian
work distributions, P�W�, onto which finite-time work is
done and for which the change in free energy is attributed
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solely to an energy change. In Sec. II we consider the case of
stretching a one-dimensional harmonic chain. We study the
fluctuations in the work for this model when the stretching
dynamics are both deterministic and dissipative, i.e., Rouse
chain. This model contains important features of the anhar-
monic case since the one-dimensional dynamics can be re-
garded as the small amplitude limit of the fully coupled dy-
namics along both longitudinal and transversal directions
when pulling higher dimensional chains. Aspects of the non-
linear problem are relegated to future work. In Sec. III the
study is extended to the multiply bonded system, i.e., the
Zwanzig problem �43�.

With the results derived in Secs. II and III in hand, we
turn in Sec. IV to an analysis of the distribution P�e−W�.
While the mean of P�e−W�, e−�F, is related to the thermody-
namic changes undergone by the system, the width of P�e−W�
depends on nonequilibrium parameters including bath-
system coupling. In Sec. IV we discuss when stochastic dy-
namics may be legitimately invoked to model the breadth of
the distribution P�e−W� and indicate how information on the
system-bath interaction may be extracted from P�e−W�. We
briefly conclude in Sec. V.

II. MEMORY EFFECTS FOR THE HARMONIC CHAIN

A. Deterministic case

We first consider the example of a classical harmonic
chain with N subunits and coupling matrix K in real space
with cyclic boundary conditions and further add that the
Nth subunit is linearly coupled to an external force f�t�
which is nonzero from �0,��. We emphasize that the total
phase volume is conserved throughout. Under certain cir-
cumstances, we may exactly diagonalize K and compute the
partition function Z after having applied a force for any
given time �, such that ln�Z��� /Z�0��� f���TK−1f��� where
f���T= �0,0 , . . . , f����. The proportionality constant is � inde-
pendent. The 0-eigenvalue mode, which arises for the case of
cylic boundary conditions, can be avoided by subtracting the
kinetic energy associated to the center of motion from the
Hamiltonian.

The purpose of this short introduction is simply to high-
light that, given ln�Z��� /Z�0��, it is easily verified that the
free energy difference arises from changes to the internal
energy exclusively. Thus, all such models are special in the
sense that no entropy is generated. On the other hand, these
models can be used to single out dynamical broadening ef-
fects in the work distribution arising from system-bath inter-
action and finite system recurrence time. The remainder of
our discussion will be restricted to such models.

For now, we will chose to compute the free energy
using Jarzynski’s formalism by explicitly computing all non-
zero work cumulants for the case of tridiagonal K with
Hamiltonian

H = �
m=1

N 	1

2
pm

2 +
1

2
K�xm − xm−1�2 − f�t�xm�Nm
 . �2�

where the mass of each subunit is set to 1.

We use the Fourier representation for the set of coordi-
nates xm in real space in mass rescaled units xm

= 1
�N

�k=1
N e2�imk/Nxk appropriate for the case where cyclic

boundary conditions are employed, such that

H = �
k=1

N 	1

2
pkp−k +

1

2
	k

2xkx−k −
f�t�
2�N

�xk + x−k�
 , �3�

where �pk are the k-space momenta, �	k
2�4K sin2� �k

N
� are

the successive eigenvalues of the coupling matrix, and the
last term has been rewritten in symmetric form.

It follows from the definition of W��� that

W���=−�0
�dt ḟ�t�xN�t�=−�k=1

N �0
�dt

ḟ�t�
�N

xk�t�. The average work
may be simplified to

�W���� = − �
k=1

N �
0

�

dt
ḟ�t�
�N

�xk
p�t�� , �4�

where the superscript p labels the particular solutions of the
full �xk�t�, since the mean for the set �xk�0� , pk�0� is 0.
Furthermore, it follows from the fact that members of the set
�xk�0� , pk�0� are Gaussian random variables that all work
cumulants above the second are identically zero so that

�F��� = �W���� − 1/2�W���2�c. �5�

We may evaluate �W���� by formally inserting the particu-
lar solution of the equation of motion �EOM� for every k
mode, obtained from the Hamiltonian of Eq. �3�, into Eq. �4�
yielding for the deterministic case

�W����det = − �
k=1

N−1
1

N
�

0

�

dt�
0

t

ds ḟ�t�Gdet�t − s�f�s� , �6�

where Gdet�t��sin 	kt /	k. The summation excludes the
k=N mode so that Gdet�t� be well defined for all k. Integrat-
ing by parts, and using f�0��0, we obtain

�W����det = − �
k=1

N−1
f���2

2N	k
2

+ �
k=1

N−1 �
0

�

dt�
0

t

ds ḟ�t�
cos�	k�t − s��

N	k
2 ḟ�s� . �7�

By direct calculation from Eq. �2�, the change in free

energy is �F=−�k=1
N−1 f���2

2N	k
2 . From this change in free energy

and Eq. �5� the fluctuations in the work are

�W���2�det,c → 2�
k=1

N−1 �
0

�

dt�
0

t

ds ḟ�s�
cos�	k�t − s��

N	k
2 ḟ�t� .

�8�

Alternatively, we may have explicitly calculated the second
work cumulant and verified the JE.

B. Rouse dynamics and comparison to Sec. II A

The above methodology is particularly useful for the
Gaussian set �xk�0� , pk�0�, introduced in the Hamiltonian of
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Eq. �3�, with zero mean and may be readily adapted to treat
Rouse dynamics of the harmonic chain, labeled R, by modi-
fying the above treatment at the level of the particular EOM.
The solution to the EOM for the case of Rouse dynamics is
simply

x�t� = e−
−1Ktx�0� + �
0

t

dse
−1K�s−t�
„
−1f�s� + 
−1��s�… ,

�9�

where ��t� is the random noise term with zero mean and
variance ��m�t��n�t���=2�mn��t− t�� and 
 is the strength of
the dissipation.

The average work for the case of Rouse dynamics then
follows

�W����R = 
−1�
0

�

dt�
0

t

dsḟ�t�Te
−1K�s−t�f�t�

= 
−1�
0

�

dt�
0

t

ds ḟ�t��e
−1K�s−t��NNf�t� . �10�

Since K has earlier been diagonalized, the second equality of
Eq. �10� above is easily evaluated. Integrating by parts we
obtain

�W����R = − �
k=1

N−1
f���2

2N	k
2 + �

k=1

N−1 �
0

�

dt�
0

t

ds ḟ�t�
e
−1	k

2�s−t�

N	k
2 ḟ�s� .

�11�

The work fluctuations follow from the above and Eq. �5�

�W���2�R,c = 2�
k=1

N−1 �
0

�

dt�
0

t

ds ḟ�s�
e
−1	k

2�s−t�

N	k
2 ḟ�t� . �12�

The results of Eqs. �11� and �12� are consistent with the
results of the insightful work of Dhar �38�. As before, it is
simple but tedious to verify the JE by explicitly computing
Eq. �12�.

We wish to compare the results for the work for both
deterministic and Rouse dynamics �7� and �11� respectively,
for a general applied force of the form �tn where � is a
t-independent proportionality constant and the applied force
is linearly coupled to a system coordinate. It is straightfor-
ward to do so by adopting the following convenient notation
for the general form for the average work applicable to both
deterministic and Rouse dynamics

�W���� = − �
k=1

N−1
1

N
�

0

�

dt�
0

t

ds ḟ�t�G�t − s�f�s� , �13�

where �0
t dsG�t−s�f�s� is identified with ��t

2+	k
2�−1f�t� for

the deterministic chain and �
�t+	k
2�−1 for the Rouse chain.

As a note, the inverse of the operator is guaranteed to exist
because the summation over k excludes k=N.

It is now possible to rescale time such that t→ t̃�, where t̃
is a dimensionless time, and rewrite the average work of Eq.
�13� as follows:

�W����det = − �
k=1

N−1 �
0

1

dt̃
f̃
˙�t�

2N	k
2	1 −

�t̃
2

�2	k
2 + O��−4�
 f�t� ,

�14�

�W����R = − �
k=1

N−1 �
0

1

dt̃
f̃
˙�t�

2N	k
2	1 −

�t̃


−1�	k
2 + O��−2�
 f�t� ,

�15�

where f̃
˙�t���t̃ f�t� and we have expanded the general G�t� as

a geometric series. Memory effects are unimportant when �
exceeds the relaxation time of the most sluggish of the k
modes, i.e., �
 /	k

2 and it is thus possible to approximate
the exact P�W� beyond the first few recurrence times of the
system by some dissipative approximation.

Also, it is surprising to see that even as the force grows in
time, the effect of fluctuations in the work become negligible
for long time implying that the distribution in W or e−W even-
tually peaks around its thermodynamic value �44�. A note on
stretching chains with open ends can be found in Ref. �45�.

III. MEMORY EFFECTS FOR A SYSTEM WITH
EXPLICIT BATH

We extend the analysis to an explicit bath model, the mul-
tiply bonded system MBS in which a known potential energy
surface is coupled to N bath modes �43�. We show how the
dependence of the work fluctuations on realistic bath param-
eters simplifies beyond the first few recurrence times of the
system.

We begin by defining the Hamiltonian

H =
1

2
p2 − f�t�x +

K

2
x2 + �

j=1

N �1

2
pj

2 +
1

2
	 j

2	qj −

 j

	 j
2x
2�

�16�

with index j denoting the bath and where 
 j is a measure
of the bath-system coupling strength. In order to compute
both average work and fluctuations we first write coupled
EOM for system and bath and eliminate bath variables
to obtain an EOM depending exclusively on system
variables. The resulting system EOM is often written as
ẍ�t�=� jFj�t�−�0

t ds� jMj�t−s�ẋ�s�+ f�t�−Kx�t�, where the

memory kernel � jMj�t�=� j

 j

2

	 j
2 cos�	 jt� and the random noise

term Fj�t�=
 j�qj�0�−

 j

	 j
2 x�0��cos�	 jt�+


 j

	 j
pj�0�sin�	 jt�. In

the continuum limit, � jMj�t� smoothly goes over to
�0

�d	g�	�
�	�2 cos�	t� /	2, where g�	� is a bath density of
states.

It is natural to solve the resulting system EOM in Laplace
space. Since both system and bath degrees of freedom are
initially Gaussian random variables with zero mean, the
average work is simply

�W����MBS = − �
0

�

dt�
0

t

ds ḟ�t�GMBS�t − s�f�s� , �17�

where
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�
0

t

dsGMBS�t − s�f�s� = L−1	�K + z2 + �
j

zM̂ j�z��−1
f̂�z�


= L−1�â�z� f̂�z�� �18�

with L−1 denoting the inverse Laplace transform operation
and â�z� is defined through the expression above. We note
however that by the �inverse� Laplace convolution theorem

L−1� f̂�z�â�z��=�0
t dsf�s�a�t−s�. It is now straightforward to

integrate Eq. �18� by parts

�W����det = −
f���2

2K
+ �

0

�

dt�
0

t

ds ḟ�t�v�t − s� ḟ�s� , �19�

where v�t� is implicitly defined through Eqs. �18� and �19�
and depends on the pole structure of â�z�. The average work
is entirely analogous to the form of Eqs. �7� and �11�. As
expected, we verify that the bath does not contribute to the

system free energy change −
f���2

2K .
By selecting, for simplicity, identically distributed

�
 j ,	 j, i.e., g�	�=N��	−	0� with 
�	�=
, then for arbi-
trary f�t� we recover a closed form expression for the
average work

�
0

t

dsv�t − s� ḟ�s� = L−1	zf6�z�
r1r2 + �r1 + r2 − z2�	2

r1r2�r1 − z2��r2 − z2� 
 ,

�20�

where

r1,2 = �− 		2 +

2N

	2 + K
 ±�		2 +

2N

	2 + K
2

− 4K	2

2
� .

Though we will come back to this point in the context of a
discussion on a more general spectral function, it suffices
to indicate for now that for sufficiently large � the work
fluctuations, expressed in Eqs. �19� and �20�, considerably
simplify and eventually vanish for infinite � �46�.

While identically distributed bath couplings and frequen-
cies lead to closed form expressions for work averages and
fluctuations, �20�, it is straightforward to extend the analysis
to more realistic bath models. By doing so, we make explicit
the dependence of the work fluctuations on parameters of
interest including system-bath coupling strength and as an
aside obtain the expected result that the average work is in-
deed independent of the choice of bath spectral function for
long times.

As an illustration, we select a Lorentzian density of states
g�	�= 2

�

	c

	c
2+	2 with Ohmic coupling 
�	�=c	. We identify

	c as the bath cutoff frequency and c as a measure system-
bath coupling strength with units of inverse time. Given the
above, the Laplace transform of the term containing the
memory kernel in Eq. �18� takes the form

z�
j

M̂ j�z� = z�
0

�

d	
2c2

�

	c

	c
2 + 	2

z

z2 + 	2 . �21�

By repeating the arguments that lead to Eqs. �14� and
�15�, we first expand the denominator on the right hand side
of Eq. �18� as a geometric series

�K + z2 + �
j

zM̂ j�z��−1

=
1

K
�1 −	 z2

K
+

z�
j

M̂ j�z�

K

 + ¯

� , �22�

where by rescaling t= t̃� such that z= z̃�−1 �and L−1= L̃−1�−1�
terms not explicitly written are at least O��−2�. Since z is the
Laplace variable integrated along a vertical line in the com-
plex z plane to the right of the real part of all singularities we
take Re�z��	c and expand the resulting integral of Eq. �21�
for large �

�z/K��
j

M̂ j�z� =
z̃c2

�K	c
	1 −

z̃

�	c
+ O��−2�
 . �23�

Inserting Eq. �23� back into Eq. �22� we recover

�K + z2 + �
j

zM̂ j�z��−1

=
1

K
�1 −

z̃c2

�K	c
	1 −

z̃

�	c
+ O��−2�
 + O��−2�� .

�24�

In analogy to Eqs. �14� and �15�, we recover a single condi-
tion to leading order which must be satisfied in order for
work fluctuations to have small effect for long �; �

� jM̂ j�z̃→0� /K. This condition, roughly interpreted, leads
to the conclusion that for stretching times exceeding the
typical system relaxation time, work fluctuations are sub-
dominant. Thus, P�W� and correspondingly P�e−W� are
sharply peaked around their thermodynamic mean and there
is some flexibility as to how the bath system interaction may
be modeled.

Additional conditions, appearing in Eq. �24� at higher or-
der in �−1, simply arise because we have not set the inertial
term of the system EOM to zero, i.e., assumed overdamped
dynamics as was the case for the Rouse model presented
earlier. The dependence of the width of the work distribution
with the cutoff frequency and bath system coupling follows
from Eq. �24�.

IV. BATH DEPENDENCE AND LONG-TIME BEHAVIOR
OF P„e−W

…

The work distribution is defined as the expectation value
of �(W−W��qi�0� , pi�0� ,��) over an initial distribution of
phase points ���qi�0� , pi�0�� as follows

P�W� � � D��qi�0�,pi�0�����qi�0�,pi�0��

��„W − W��qi�0�,pi�0�,��… �25�

with all other factors absorbed into the above defined
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measure. By expanding the � function in its Fourier repre-
sentation ��x�=�−�

� dmeimx, with m as the dummy Fourier
variable, it is possible to show that for all examples consid-
ered, the work distribution P�W , ��i� is Gaussian, where
��i is the set of system and bath parameters. Assuming the
order of integration of the variables �qi�0� , pi�0� and m is
interchangeable, we recover in the integrand with respect to
m what is commonly referred to as the characteristic function
of P�W , ��i�. In general, the dependence of first and second
work cumulants on ��i is complicated.

From the approach we have taken to compute the fluctua-
tions in the work for various models, we concluded that
�W2�c is subdominant in � for f��� varying as any power of �,
in the case of linear coupling to the external force. The long-
time limit is obtained by subsequently integrating over m
thus reducing P�W , ��i� to the following:

lim
�→�

P�W� = �„W − �W��qi�0�,pi�0�,���… �26�

which is a reasonable result.
We are, however, interested in the properties of the distri-

bution of P�x�e−W , ��i� whose width measures the degree
of accuracy of a free energy measurement using Jarzynski’s
prescription. Moreover, for Gaussian P�W , ��i�, P�x , ��i� is
log normal with

P�x,��i� = x−1/�2��W2�ce
−�ln x + �W��2/2�W2�c. �27�

The long-time behavior of P�x , ��i� then follows

lim
�→�

P�e−W,��i� = e�W��„W − �W��qi�0�,pi�0�,���… .

�28�

Given the results derived from Secs. II and III, it is pos-
sible to quantify whether certain regimes of bath parameters
lead to efficient sampling of P�x , ��i� and how these may be
extracted from work distribution widths. We will show this
for particular �i appearing in the models considered earlier
for the special case where f�t� is linear in t.

The first such parameter considered is 
 defined in part B
of Sec. II, Eq. �9�, as the measure of dissipation in the Rouse
model. We assume for now that all parameters, aside from 
,
are specified and held fixed so that PR�x , ��i�, determined
from Eqs. �11� and �12� and Eq. �27�, is simply rewritten as
PR�x ,
�. This distribution plotted in Fig. 1 has a mean
e−�F=2.29 which is independent of 
. Clear sharpening of
the distribution around its thermodynamic mean is apparent
for increasing dissipation. Note from Eq. �9� that decreasing

 implies stronger dissipation in this model �31�.

The joint 
-� dependence can also be probed by reconsid-
ering an equivalent distribution to that of Fig. 1 for longer �.
The mean of PR�x ,
� is higher in Fig. 2 for the set of pa-
rameters selected e−�F=27.8 though all other features of in-
terest remain unchanged. Incidentally, by comparing Eqs. �7�
and �11� it is easy to verify that the approximate PR�x ,
�
becomes indistinguishable from the deterministic
Pdet�x , ��i� when both � and 
−1 are large since this is pre-
cisely the regime where the dynamical broadening effects
become negligible. Extracting 
 from the standard deviation

of the work distribution is then possible in certain limits
provided the system under study can be mapped onto one
with Rouse dynamics.

Many of the above arguments carry over directly to the
MBS though a few remarks are in order. We first consider the
distribution of PMBS�x ,
�, constructed using Eqs. �19� and
�20� and Eq. �27�, in the strong coupling limit to the bath,
large 
. In this limit, memory effects induced by coupling of
the system to the medium are important, the resulting distri-
bution is broad and the corresponding mean of PMBS�x ,
�
difficult to sample. The opposite holds true for weak cou-
pling to the bath though for long enough �, memory effects
become subdominant as shown in Eq. �24� for the case of a
more general bath spectral function. The effect of coupling to
the environment on the distribution of PMBS�x ,
� is repro-
duced in Fig. 3 for a specified set of parameters with mean
e−�F=8.27.

As before, while the ease of extracting thermodynamic
information is determined by the shape of PMBS�x ,
�, bath
parameters of interest can be reliably extracted from the
breadth of the work distribution provided the system can be
mapped to the Zwanzig model.

FIG. 1. Effect of dissipation on the sharpening of the distribu-
tion PR�x ,
� with �N ,K ,� ,�= �20,1 ,1 ,1 in the appropriate units.

FIG. 2. Effect of dissipation on the sharpening of the distribu-
tion PR�x ,
� using �N ,K ,� ,�= �20,1 ,1 ,2 in the appropriate
units.
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V. CONCLUSION

This paper is meant to serve a threefold purpose. We first
note that the difficulty of having to deal with the notion of a
general nonequilibrium temperature appropriate to the de-
scription of the final system plus bath Boltzmann weights is
circumvented by dealing with systems of a special
type. More specifically, our analysis is limited to stretching
of a harmonic system through linear coupling to an external
force, for which there is only an energy change. By
extension, the case of Rouse dynamics or other strongly dis-

sipative systems is also special by virtue of having well de-
fined Boltzmann weights while work is applied onto the
system.

Secondly, we extend our previous work on convergence
properties of the JE by eliminating all sources of broadening
in P�W� except those arising from dynamical origins �35�.
This is done by explicitly calculating work fluctuations for
various harmonic models containing the essence of the more-
general nonlinear problem. We relate this discussion back to
how various nonequilibrium parameters of the model affect
the breadth of the distribution P�e−W� and thus how simply
the mean �e−�F� is selected for various parameter regimes.

Thirdly, from the behavior of P�W�, alternatively P�e−W�,
it is shown how important parameters relating to the bath-
system interaction may be simply extracted.

For nonlinear coupling to the external force, it is possible
to imagine changing the force constant of the harmonic sys-
tem in time which, following arguments identical to those at
the beginning of Sec. II, leads to generation of entropy. From
these arguments, the dynamics of systems with slightly an-
harmonic potentials are equally good candidates for the
study of dynamical entropy generation within the context of
the JE. Additional models of interest would certainly include,
though not be limited to, the dynamics of the freely jointed
chains with the possibility of slight excluded volume inter-
action and the wormlike chain with either pure bending or
bending and stretching potential.
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diagonalized by the discrete sine transform xm�t�
=� 2

N+1�k=0
N sin� �mk

N+1
�xk�t� which satisfies the specified bound-

ary conditions. It is important to note that the work, when
applied to a single bead, is a boundary effect. As an example,
if the work is applied to the last bead the analogue of Eq. �3�

follows with some differences, namely, 	k=2�K sin� �k
2�N+1� �

and f�t�xN= f�t��k=1
N � 2

N+1 sin� �Nk
N+1

�xk�t�. The free energy for
open ends is then

�F = − �
k=1

N
f���2

N + 1	 sin2��Nk
N+1�

4Ksin2� �k
2�N+1� �


= −
f���2

N + 1
� N

2K
+

1

2K
cos	 N�

2�N + 1�
csc	 �

2�N + 1�
�
� − f���22K + O�N−1� .

This free energy difference has the same � dependence, though
different N scaling, as the free energy difference computed
using cyclic boundary conditions, see Eqs. �7� and �8�. On the
other hand, it is also possible to compute a free energy change
with open chain boundary conditions when the force is applied
to a bead in the middle of the open-ended chain. In this case
both � dependence and N scaling of the free energy change are
identical to the free energy change computed using cyclic
boundary conditions for the chain.

�46� As a check, we expand Eq. �19� with v�t� specified by Eq. �20�

in the weak coupling limit lim
→0�W����det=−
f���2

2K

+�0
�dt�0

t ds ḟ�t�
cos��K�t−s��

K ḟ�s�+O�
2� which is the correct analog
of Eq. �7�.
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